87 research outputs found

    Demonstration of a scaling advantage for a quantum annealer over simulated annealing

    Full text link
    The observation of an unequivocal quantum speedup remains an elusive objective for quantum computing. The D-Wave quantum annealing processors have been at the forefront of experimental attempts to address this goal, given their relatively large numbers of qubits and programmability. A complete determination of the optimal time-to-solution (TTS) using these processors has not been possible to date, preventing definitive conclusions about the presence of a scaling advantage. The main technical obstacle has been the inability to verify an optimal annealing time within the available range. Here we overcome this obstacle and present a class of problem instances for which we observe an optimal annealing time using a D-Wave 2000Q processor over a range spanning up to more than 20002000 qubits. This allows us to perform an optimal TTS benchmarking analysis and perform a comparison to several classical algorithms, including simulated annealing, spin-vector Monte Carlo, and discrete-time simulated quantum annealing. We establish the first example of a scaling advantage for an experimental quantum annealer over classical simulated annealing: we find that the D-Wave device exhibits certifiably better scaling than simulated annealing, with 95%95\% confidence, over the range of problem sizes that we can test. However, we do not find evidence for a quantum speedup: simulated quantum annealing exhibits the best scaling by a significant margin. Our construction of instance classes with verifiably optimal annealing times opens up the possibility of generating many new such classes, paving the way for further definitive assessments of scaling advantages using current and future quantum annealing devices.Comment: 26 pages, 22 figures. v2: Updated benchmarking results with additional analysis. v3: Updated to published versio

    Quantum Hall States in Graphene from Strain-Induced Nonuniform Magnetic Fields

    Full text link
    We examine strain-induced quantized Landau levels in graphene. Specifically, arc-bend strains are found to cause nonuniform pseudomagnetic fields. Using an effective Dirac model which describes the low-energy physics around the nodal points, we show that several of the key qualitative properties of graphene in a strain-induced pseudomagnetic field are different compared to the case of an externally applied physical magnetic field. We discuss how using different strain strengths allows us to spatially separate the two components of the pseudospinor on the different sublattices of graphene. These results are checked against a tight-binding calculation on the graphene honeycomb lattice, which is found to exhibit all the features described. Furthermore, we find that introducing a Hubbard repulsion on the mean-field level induces a measurable polarization difference between the A and the B sublattices, which provides an independent experimental test of the theory presented here.Comment: 9 pages, 8 figures. Updated to version that appears in PR
    • …
    corecore